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STATISTICAL CHARACTERISTICS OF A PASSIVE ADMIXTURE IN A 

HOMOGENEOUS ISOTROPIC TURBULENCE FIELD 

I. V. Nikitina and A. G. Sazontov UDC 532.517.4 

]. It is well known that in studying different physical phenomena, in particular in 
order to understand mixing processes, it is necessary to know the spectral characteristics 
of the passive admixture located in a developed turbulence field []]. Information on the 
statistical properties of the corresponding scalar fields (concentration, temperature, mois- 
ture content and so on) is important in analyzing the propagation and scattering of acous- 
tical, optical, and radio waves in a turbulent medium [2]. 

In this paper, we study the spectral structure of a passive admixture with the help of a 
regular procedure, based on Wyld's diagrammatic technique [3]. Using improved approximations 
of direct interactions, we find the spectrum of the passive impurity in the inertial-convec- 
tive interval, obtained previously from dimensional considerations [4, 5] and semiempirical 
theories, which are reviewed in [6, 7]. The flow direction of the passive admixture is deter- 
mined from the scale spectrum. The asymptotic behavior of the spectrum is studied in the 
viscodiffusion interval of wave numbers. For generality of the presentation, the spectral 
characteristics are analyzed in a space with arbitrary dimensionality d. 

2. In order to describe the passive admixture in the homogeneous isotropic turbulence 
field, we shall examine the Navier--Stokes equations, the equation of continuity, and the dif- 
fusion equation, which in the k representation have the form 

( ~--}-+ v k~)\ ark= ~i D~v ~ ~*~'*v~(d) (k + kl + k~) k l ~ k ,  ~ . ,  

k ~ ' ~  - -  O, 

- -  k l U k 2  U 21 1 2~ 

Gor'kJi. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 73-79, July-August, 1982. Original article submitted July ]6, ]98]. 
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where p~v = k~h~v + k~h~a; A~ ~ = 5=~-- k=k~/k 2 ; 5aB is the Kronecker symbol; v~ and @z are the 

dimensional Fourier transformations of the velocity field and of the concentration of the 
passive admixture : 

' ' ,   k(t) , ' : r  " = J o. ( r ,  t) 

is the kinematic coefficient of molecular viscosity and X is the coefficient of molecular 
diffusion (thermal conductivity). 

In what follows, for definiteness we shall assume that O (r, t) is the temperature im- 
parted to the fluid, but not having a significant effect on the dynamics of turbulence. 

We shall go over to a statistical description of the isotropic velocity and temperature 
fields. For this, we shall use Wyld's diagrammatic technique [3], which makes use of two 
characteristics of each nonlinear field: the pair correlation function and Green's function. 
We shall introduce the diagrams of these quantities in the k representation (see Fig. l): 

<Vk,oVk'~,'> ~ *~ = f ~ 8  (~+1) (q - -  q'), <Ok~Ok',o'>* ----- iqS(d+~) (q _ q,), ( 2 . 1 )  

/ / 6  ko~ ~_ GaV6(a+~)/. 60k0~ = gq6(d+l)(q__ q,), 

q = (k, ~o), 6 (4+1) (q)--~ 6 ((o) 6 (a) (k). 

Due to the isotropy of turbulence, the spectral tensors F~ ~ and Go ~ can be represented in the 
form 

= a  AY. 

The auxiliary quantities ~o and gko describe the reaction of the turbulent velocity and 
temperature fields to external perturbations .[ko and ~), introduced on the right sides of 
the Navier--Stokes equations and the heat conduction equation. 

The spectral characteristics of (2.1) satisfy the Dyson equation 

fi'ko~ ---- ]Gko [iQbko ,: Gko ---- (0- [ -  i rk ~ -  Yk~ )-~,: ( 2 . 2 a )  

Ikm = ]gko l*q~ko , gko "~ ((0 + ixk ~ - -  O'ko )-1. (2 . i b )  

The f i r s t  d i a g r a m s  f o r  Cq, Xq and (pq, Oq a r e  p r e s e n t e d  i n  F i g .  1, w h e r e  t h e  t r i a n g l e  
�9 -r~.6',/ ~(d+l) t~ finally r . cz(z 1 ~lkczl indicates the vertex ~kklkiU ~U +q~ + q~) ~--kk~% = [Ak k~l + A~ ] ~=x~aglv~ while the circle ~k I ak~ I, 

indicates the quantity k~(d+~)(q + q~ + q=). 
The analysis of the starting diagrammatic series (see Fig. I) encounters well-known dif- 

ficulties, related to the divergence of integrals in the region of small k. Physically, 
these divergences are due to the effect of transport of small-scale energy pulsations con- 
taining vortices. Part of the most divergent diagrams for hydrodynamic turbulence, which 
describe the transport interactions, was summed in [8]. In this case, the improved equations 
admit in the direct interaction approximation (which corresponds to the inclusion of second- 
order diagrams with respect to the vertices ~=~v ~ in the three-dimensional [9] and two- ,t k k l k i /  

dimensional [I0] cases exact solutions in the form of Kolmogorov spectra. We shall present 

zq ~ rvazvvx~- 

+'"' 

Fig. I. 

+ ~176 , 

+ ~176 
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the corresponding values of the indices for the pair correlation function of the velocity 
field, which we will need in analyzing the spectra of temperature pulsations: 

fk~ = k-r l (~lk~) 

( the  f u n c t i o n  Fq i s  r e l a t e d  to  the s t a r t i n g  f u n c t i o n  Fq by the r e l a t i o n  Fke = < F k e - k v ) v ,  
where < . . . > v  i n d i c a t e s  a v e r a g i n g  ove r  the  random v e l o c i t y  f i e l d  a t  an a r b i t r a r y  p o i n t  ( r ,  t )  
w i t h  the  he lp  o f  Wyld ' s  p r o c e d u r e ) .  

In  the  t h r e e - d i m e n s i o n a l  case  (d = 3 ) ,  a = l l / 3 ,  ~ = 2 /3 ;  in  the  t w o - d i m e n s i o n a l  case  
(d = 2 ) ,  two s o l u t i o n s  e x i s t  w i t h  d = 8 / 3 ,  B = 2/3 and ~ = 4, B = 0, r e s p e c t i v e l y  and,  i n  
addition, the first solution corresponds to a spectrum with constant energy flux So, while 
the second corresoonds to a spectrum with constant enstrophy flux ~2. 

When transport is included, certain subtractions appear in diagrams for Oq and Tq and, 
in this case, within the direct interaction model, the corresponding quantities have the form 

= _ k~ 2~hklgq2Fql [8 (q + q~ + q~) + q~)] dq~dq2, 

f ~ k ~ Z  F r~(~+~) _ 8c~+~)(q 

�9 gk~ = <~-~,>,, I~ = <~_~,>,. 

The spectral functions gk~ and fk~, in their turn, likewise satisfy the Dyson equations: 

~k~ = [gk~] ~ k ~ ,  g"k~ = (~ -{- i%k 2 --~k~ )-~. ( 2 . 4 )  

3. We shall first examine the statistical characteristics of the temperature field in 
the inertial-convective interval min(L, L$) = Lo>>k-~>> ~o = max(~, ~ ), where L, L are the 
characteristic scales of the energy containing part of the spectrum of the velocity and tem- 
perature fields; n = (v3/~)~/4, D = (X~/~)~/4 are the internal Kolmogorov scales of the cor- 
responding fields.* Internal friction and molecular thermal conductivity can be neglected 
for perturbations with scales in these intervals. 

We first note that the system of equations (2.4) admits a thermodynamically equilibrium 
solution Iq = (T/~) Im gq, which results in exceptional situations, when it is possible to 
neglect sources and sinks of turbulence. The system (2.4) also contains nonequilibrium flow 
distributions, which (with v = X = 0) we shall seek in a scale-invariant form: 

~ = k - ~ )  r(~lkg~ [q = k- ,~(~lk ' ) .  ( 3 .  ~) 
The s o l u t i o n  w i t h  the f low ( 3 . 1 ) ,  f o r  example,  under  o c e a n o g r a p h i c a l  c o n d i t i o n s  a c c o r d -  

ing to Phillips [l], corresponds to the following physical picture. The random entrainment 
of cold water from below creates a source of temperature fluctuations in the upper layer of 
the ocean and, in this case, the characteristic initial scale of these pulsations corresponds 
to the scale of liquid vortices responsible for the entrainment. The cascade process of 
fragmentation of the vortices of the velocity field into smaller and smaller perturbations 
(with d = 3) will lead simultaneously to fragmentation of inhomogeneities of the temperature 
field until molecular heat conduction becomes important, which leads to an equalization of 
temperature at nearby points. Thus, as a result of entrainment and the subsequent cascade 
fragmentation process due to turbulent mixing, there arises a flow of the measure of temper- 
ature inhomogeneities over the spectrum of scales. 

The expression for the index s can be obtained directly from the Dyson equations (2.4) 

s = 2 ~- d - -  (a -~ ~). ( 3 . 2 )  

In order to find the index p, we shall form in a standard manner [II] the combination 

~q = Im (~q gq Jr r~q) = O, (3.3)  
equivalent to the Dyson equation for Iq. 

Integrating (3.3) with respect to m and performing next the conformal transformation 
[9] 

k = k " ( k / k " ) ,  k~ = k ' ( k / k " ) ,  k~ = k(k/k"),:  

= ~ " ( k / k " ) ~  o~ = o ' ( k / k " )  ~, o~ = ~ ( k / k " )  ~, 

" " ~ / ~ ' ~ / ~  d =  ~In the two-dimensional case, the scales ~ and ~play the role of ~ = kv/~2 ) and ~ (• 
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we obtain the equation 

Im (d+1) q, + (kj ' 
: ~ , k l F q l I q f q . z ,  (3.4) 

where x = 2 + 2d -- p -- (~ + 8). 

Together with the equilibrium solution lq = (T/v)Im ~g from(3.4), it is evident that there 
is also another solution with x = 0, for which the expresslon in square brackets vanishes due 
to the obvious identity 

presence of the integral of motion ~[~k]2d(~) k of the starting system of equa- reflecting the 

tions. Thus, for the index p, we obtain the relation 

p = 2 +  2d- -  ((z+~).  (3.5) 

From (3.2) and (3.5), we also obtain, for the three-dimensional case using the Kolmogorov 
values of ~ and 8, Kolmogorov expressions for p and s: p = ll/3, s = 2/3. 

For d = 2, we have two spectra with p = 8/3, s = 2/3 and p = 2, s = 0, respectively. 

A simple analysis, analogous to that performed in [12, lO], shows that the integrals in 
(2.3) and (3.3) over the distributions found converge at the lower and upper limits and, 
thus, the spectra obtained are local spectra. 

4. Let us examine the direction of flow of the temperature inhomogeneities over the 
spectrum of scales. For this, we shall write the equation of balance for the spectral inten- 
sity of temperature pulsations 

~Ik = . I  ~ (d) 
0"7" - -  2 I m  ks /kklk26 (k -{- k 1 + k~) d ( d ) k l d ( d ) k ~ ,  . ( 4 . 1 )  

where ,] 'kklk 2 ----- < V k l O k 2 O k / .  

It has the form of a continuity equation, so that the right side can be represented as 
a divergence of the flux of the measure of inhomogeneity in the temperature field: 

eT ---- - -  ( i / 2 )  S (d) S k~-ldk2 I m k ~  J" J'~klk2~ (d) (k -]- k~ -]- k2) d(d)kld(d)k2. ( 4 . 2 )  
0 

Here, S(d) = 2~d/2/F(d/2) is the surface area of a unit sphere in d-dimensional space and 
11 (-) is the gamma function. 

(~ ~ 

Let us express the triple correlation function Jkk~k2 as a series in powers of gq, Iq, 

and Fq, and in this case in the direct-interaction approximation for the stationary case, we 
have ~ 

where Jqq1~ ~- [k~gqS~ 3c k~gqJq] AkIF~I. 

Substituting (4.3), expression (4.2) can be rewritten in the form 

h 

eT = S (d) .[ ika-ldk. (4.4) 
O 

For power-law spatial spectra of temperature pulsations I k = Ak-P and of the velocity field 
Fk = Ci k-~, Ik also assumes a scale invariant form Ik ~ k x-d. In this case, it follows from 
(4.4) 

~r = S(d)k~ lk/Z. (4.5) 

In this case, x = 0, Eq. (4.5) contains an indefinite expression 0/0. Expansion of the 
indefinite term leads to a relation between the flux and the derivative with respect to the 
index% [lO] 

*An additional integration with respect to ~ removes the average over v. 
%An analogous relation occurs in the theory of weak turbulence [13, 14]. 
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e r = S ( d ) k  - ~  Ix=0" (4 .6 )  

In order to find the derivative, it is convenient to use the factorized expression for Ik in 
the form (3.4). Then, from (4.6) we obtain 

er  = (n/2) S (d) k d y d(e)k~d(a)k~5 (d) (k + kx + k~) O~k~k~h~ (k~ In k + k~  In k~) (kaI~ + k~t~I~ ) F~, (4.7) 

o o  

where O,,k~k~=3~dt2-nh(kSt)/(kSt)r(tflt) is the positive definite function [15] 
0 

Introducing the dimensionless variables as kl = ku, k2 = kv, we rewrite (4.7) finally as 
follows : 

{' ~dudv ,-, --p+l. --a-}-ll'..P = v A ~ ,  (4.8) eT 2e-~-S(d)S(d- - l )AC~/~J j - -~-~ ,v  a ~ v - - t ) l n  e-~ 

where A~uv = ( 1 / 4 ) / 2 ( u a v  u + u 2 + v 2) -- 1 -- u 4 -- v" i s  the  a r e a  o f  the  t r i a n g l e  w i t h  s i d e s  u,  
v ,  and 1, i . e . ,  t he  q u a n t i t y  i s  e s s e n t i a l l y  p o s i t i v e .  

The i n t e g r a t i o n  i n  (4 .8 )  i s  c a r r i e d  ou t  ove r  the  r e g i o n  A, d e f i n e d  by the  f o l l o w i n g  i n -  
equalities: ] u - - v  I ~ t  ~ u ~-v  . The direction of flow eT is given by the sign of the inte- 
gral on the right side of (4.8). For sign aT > 0, the flow is directed toward increasing 
wave numbers, while for the opposite inequality, towards decreasing wave numbers. We note 
that the constant Ci in the Kolmogorov spectrum for the velocity field is related to the 

flux (or for d 2) the relation 2 3 energy enstrophy by C i % ei/ . Taking this into account, 
we obtain 

sign e r = sign etsign [ ( v P - - t )  ln v ] ~ s i g n  s / s ign  p. 

For p = 0, the  magn i tude  o f  the  f l u x  eT v a n i s h e s .  This  i s  r e l a t e d  to  the  f a c t  t h a t  t h i s  
v a l u e  o f  p c o r r e s p o n d s  to  the  t h e r m o d y n a m i c a l l y  e q u i l i b r i u m  s o l u t i o n .  

For  n o n e q u i l i b r i u m  d i s t r i b u t i o n s  p > 0 (bo th  f o r  d = 3 and d = 2 ) ,  the  f l u x  o f  t empera -  
t u r e  i n h o m o g e n e i t i e s  a l s o  a lways has a s i g n  c o r r e s p o n d i n g  to  the  f l u x  o f  the  v e l o c i t y  f i e l d .  
As f a r  as we know, the  s i g n  o f  aT has no t  been d i s c u s s e d  p r e v i o u s l y  i n  the  l i t e r a t u r e .  

5. Le t  us examine the b e h a v i o r  o f  the  spec t rum o f  t e m p e r a t u r e  p u l s a t i o n s  f o r  l a r g e  
wave numbers .  I n  t h i s  c a s e ,  t he  shape o f  the  spec t rum I k w i l l  depend g r e a t l y  on the  v a l u e  
of  the  P r a n d t l  number Pr = v/X. In  what  f o l l o w s ,  we s h a l l  r e s t r i c t  our  a n a l y s i s  to  the  ease  
Pr  > > l ,  which i s  t y p i c a l  f o r  most  r e a l  f J u i d s .  For  Pr  > > l ,  t h e r e  e x i s t s  a v i s c o c o n v e c t i v e  
i n t e r v a l  o f  wave numbers ~- l<<k<<(Pr ) l / eq  -1 : (e/vze)l/4 , Where the  m o l e c u l a r  v i s c o s i t y  a l r e a d y  
p l a y s  an i m p o r t a n t  r o l e ,  wh i l e  the  e f f e c t  o f  m o l e c u l a r  d i f f u s i o n  (hea t  c o n d u c t i o n )  i s  n e g l i -  
g i b l y  s m a l l .  In  t h i s  i n t e r v a l  the  k i n e t i c  ene rgy  spec t rum d e c r e a s e s  e x p o n e n t i a l l y ,  w h i l e  the  
s p e c t r u m  o f  t e m p e r a t u r e  p u l s a t i o n s  w i t h  d = 3, a c c o r d i n g  to  B a t c h e l o r ' s  s e m i e m p i r i c a l  t h e o r y  
[ 1 6 ] ,  v a r i e s  a c c o r d i n g  to  the  i n v e r s e  f i r s t  power law: k 2 I k  ~ k -1 .  I t  i s  d i f f i c u l t  to  o b t a i n  
t h i s  r e s u l t  a n a l y t i c a l l y ,  s i n c e  s c a l e  i n v a r i a n e e  i s  a l r e a d y  a b s e n t  i n  the  s t a r t i n g  d i a g r a m -  
m a t i c  s e r i e s  ( s i n c e  the  k i n e t i c  e n e r g y  spec t rum i s  no t  a power - l aw f u n c t i o n )  and i t  i s  f o r -  
m a l l y  n e c e s s a r y  to i n c l u d e  a l l  terms i n  t he  e q u a t i o n s  f o r  b o t h  Iq  and gq.  

I n  the  v i s c o h e a t - c o n d u c t i n g  i n t e r v a l ,  i . e . ,  f o r  k >>(e/vX2) 1/4, bo th  m o l e c u l a r  v i s c o s i t y  
and the rmal  c o n d u c t i v i t y  a r e  i m p o r t a n t  and in  t h i s  range  o f  s c a l e s ,  the  problem i s  c o n s i d e r -  
a b l y  s i m p l i f i e d  [17,  18] .  F i r s t  of  a l l ,  the  t r a n s p o r t  i n t e r a c t i o n s ,  which c o m p l i c a t e  the  
a n a l y s i s  i n  the  i n e r t i a l - c o n v e c t i v e  i n t e r v a l ,  a r e  u n i m p o r t a n t  h e r e .  Second,  G r e e n ' s  f u n c -  
t i o n  f o r  the  v e l o c i t y  f i e l d  c o i n c i d e s  w i t h  i t s  v a l u e  i n  the  f l u i d  a t  r e s t .  As in  [17, 18] ,  
i t  can be shown t h a t  the  same r e s u l t s  a r e  a l s o  v a l i d  f o r  the  c h a r a c t e r i s t i c s  of  the  p a s s i v e  
a d m i x t u r e .  Thus,  in  the  v i s c o h e a t  c o n d u c t i n g  i n t e r v a l  we o b t a i n  the f o l l o w i n g  e q u a t i o n  in  
the  k -- t r e p r e s e n t a t i o n  f o r  the  s p e c t r u m  of  t e m p e r a t u r e  p u l s a t i o n s  from ( 2 . 2 b ) :  

I k  ( t - -  t') ~ d(d)kld(a)ke5(d) (k ~- k 1 ~- k~) (5. 1 ) = k~k~hkl • 
t t 

X' y ~-~ d~l 

Carrying out the integration in (5 .1 )  with respect to time (using the fact that g~~ = 
2~e -Xk2T) and retaining for simplicity only the first term on the right side, for the 
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single-time spectral functions I k s Ik(O ) we find 

I k =  ~ 2.~ ( k + k l + k , )  i j I k  F~ r (5 .2)  

The kinetic energy spectrum in the dissipation interval, as shown in [18], contains an expo- 
nential factor F k ~ e -kn, so that the region where kl << k makes the main contribution to the 
integral in (5.2). Let us expand the integrand in (5.2) in a series in powers of kl/k and 
including second-order terms 

�9 ( k~ )dI  k d~Ih 
I ([ k + k~ 1) - -  Ia q- kl cos 0 + (t/2) ~ sin ~ 0 ~-s + (t/2) k~ cos ~ 0 . . . .  

dk 2 , 
where 0 i s  the  a n g l e  between the  v e c t o r s  k and k~. S u b s t i t u t i n g  t h i s  e x p r e s s i o n  i n t o  (5 .2 )  
and i n t e g r a t i n g  w i t h  r e s p e c t  to 0 u s i n g  the  f a c t  t h a t  d(d)k~ = S(d -- l )k~ -x sind-2Odk~dO, we 
have 

/ k ' =  (Xk) 2 r (d/2 .q- 2) 

It is convenient to rewrite Eq. (5.3) in the form 

d~Ih d + t d I ~  [~ Z~v ] (5.4) 
d'F" + - ' i - -  d-'F + 2 (d + 2) -- k 2--f- d (d + 2) Ih ---- O, 

~ o  

where E.---- dz2----IS(d)~Vhlkf-ldk I is the total kinetic energy per unit volume and ~= (d-- i)wS(d) 
.Fk~kd+~dk ~ i s  the  a v e r a g e  r a t e  of  d i s s i p a t i o n  o f  k i n e t i c  e n e r g y .  

0 
E q u a t i o n  (5 .4)  f o r  k § co has the  f o l l o w i n g  a s y m p t o t i c  s o l u t i o n -  

The v a l u e  of  the  p a r a m e t e r  B can be found from the  n o r m a i i z a t i o n  c o n d i t i o n  (d - -  t) %S (d) ~ I k  X 
# 

kd+ldk : e T. Th i s  form of  the  e x p o n e n t i a l  f a c t o r  was found e a r l i e r  by B a t c h e l o r  [16] from 
s e m i e m p i r i c a l  e q u a t i o n s  to  w i t h i n  a c o n s t a n t  ( I / 2 ) 2 ~ ( d  + 2 ) ,  which e n t e r e d  i n t o  the  t h e o r y  
as an i n d e f i n i t e  p a r a m e t e r .  The a n a l y t i c a l  approach  to the  t h r e e - d i m e n s i o n a l  case  g i v e s  the  
v a l u e  3~ 'O/2~  2.74 f o r  t h i s  c o n s t a n t ,  which a g r e e s  w e l l  w i t h  the  app rox ima te  e x p e r i m e n t a l  
v a l u e  o f  2 [ l ] .  

In conclusion we emphasize that all of the equations presented above relate not only to 
temperature, but also to the concentration of an arbitrary passive admixture, for example, 
the moisture content or CO= concentration in the atmosphere, salinity of the ocean, electron 
density in the ionosphere, etc. 
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SOME NEW PROBLEMS IN FILTRATION THEORY 

I. A. Amiraslanov and G. P. Cherepanov UDC 532.546 

I. Invariant F-Integrals in Filtration Theory. The stationary filtration of an incom- 
pressible liquid in a homogeneous isotropic porous medium is described by the following 
equations [I] : 

q ) , u = O ,  v ~ = ~ . ~  ( i = t ,  2, 3L q ~ = - - ( k / p g ) p - - k x 3 ,  (1.1) 
where v i are the components of the filtration velocity; p, pressure of the liquid; k, filtra- 
tion coefficient; pg, specific weight of the liquid; ~, velocity potential; xl, x=, x3, rec- 
tangular Cartesian coordinates (the x3 axis is directed opposite to the force of gravity). 

Let E be an arbitrary closed surface in the porous medium under consideration. If with- 
in this surface there are no singular points, lines, or surfaces of the field, the following 
equations hold [2, 3]: 

~(v~,  r ink - -  2vin~vk) = O; �9 dE ( 1 2) 
V. 

~[(vr - -  2 (vl, vh),z nd dE = 0 (i, k, l = 1,2, 3) 3) nh  (1. t l 

where the nk are the components of the unit normal vector to the surface E. 

The proof of Eq. (1.2) follows from the transformations 

,f (v@'inh - -  2vivkn~) dE = I [(v~v~),k - -  2 (v~, vh),d d V  = S ( 2vr - -  2v,  vh,r - -  2v~,~vh ) d V  = O, 
Z V V 

since, according to (I.I), vi, k = Vk,i, vi,i = 0 over the entire volume V within the surface 
E. The proof of (1.3) and other such equations is analogous. 

If within the surface E there are singular points, lines, or surfaces of the field, then 
obviously the left side of Eq. (1.2) will remain unchanged under any deformations of E which 
do not affect the singularities of the field. 
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